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Wave propagation is studied in structures consisting of alternate left- and right-handed layers. Bragg gap
and zero-n gap appear in different frequency regions of the structure. The periodicity of the structure is
broken by simply reversing the order of the layers in one half of the structure, resulting in defect modes
located inside the zero-n gap and Bragg gap. These modes can be made very narrow by adding more
layers in the structure. The defect mode located inside the zero-n gap is sensitive to the symmetry of
the structure and insensitive to the angle of incidence of the incoming radiation. Multiple modes are also
generated inside the gaps by repeating the structural pattern. Thus, a simple structure can be used for
single and multiple modes that are important for different applications.
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Metamaterials refer to artificial composite structures,
whose properties are beyond those of usual materials[1−7].
These structures comprise a homogenous medium for the
working wavelength. Left-handed metamaterial (LHM)
refers to a medium, in which the electric permittivity
and magnetic permeability simultaneously have a nega-
tive value over a certain frequency range. The LHMs
have been experimentally realized by combining the per-
mittivity negative and the permeability negative meta-
materials. The former have been realized in the form of
three-dimensional (3D) array of very long, thin continu-
ous wires in which cuts are periodically introduced[2,6,7],
whereas the latter have been realized in the form of split-
ring resonators[3,6,7].

The inclusion of LHMs in photonic band gap (PBG)
structures has led to the emergence of new mechanisms
to produce photonic gaps[8−15]. In the conventional PBG
structures, the Bragg gaps result from the multiple inter-
ference mechanism. As a result, their central frequency is
highly sensitive to the geometrical scaling of the structure
as well as to the angle and polarization of the incident
light. In a one-dimensional (1D) PBG structure con-
taining alternate left-handed and regular material (also
called right-handed) layers, the volume averaged refrac-
tive index of the structure becomes zero over a certain
frequency range. Such a frequency range cannot sup-
port propagating modes and has been termed as a zero-n
gap[8,13,14]. Given that zero-n gap does not result from
the interference phenomenon, it has quite distinct prop-
erties compared with that of the Bragg gap. Zero-n gap
is also relatively insensitive to geometrical scaling of the
structure and angular change and polarization of the in-
cident radiation[16]. Many suggestions have been made
to utilize such properties for practical applications[17−20].
One way is to introduce defect modes in zero-n gaps. The
concept of the defect mode in PBG structures is very sim-
ilar to impurity states in semiconductors. Defect modes
are produced by introducing some kind of irregularity
in a PBG structure. This break in the periodicity of

the structure may produce a transmitting mode within
the forbidden region of propagation. Such a propagat-
ing mode located inside the gap is known as the defect
mode[21]. Defect modes are important for their potential
applications. These are utilized in making filters and
mode selectors, which are important components in op-
tical communication and electro-optical systems. In this
letter, we study a simple structure that gives rise to de-
fect modes. In this scheme, there is no need to introduce
any extra layer; the periodicity of the structure is broken
by simply reversing the order of the layers in one half of
the structure. Such a structure has been referred to pre-
viously as a conjugated photonic crystal (PC), and the
properties of defect modes in conjugated PC consisting
of regular materials have been studied in Ref. [22]. In
this letter, we examined the properties of defect modes
in conjugated PCs, in which alternate layers consisted of
left-handed and regular materials. Previously, only single
mode has been studied[22]. We also find that the repe-
tition of the structure gives rise to multiple modes. In
the structure considered, the number of modes simply de-
pends on the number of conjugated PCs. Different char-
acteristics of single and multiple modes have also been
studied.

A periodic structure consisting of two layers A and B is
considered (Fig. 1); in our structure, A is a LHM layer,
and B is a regular material layer. The electric permittiv-
ity ε(ω) and the magnetic permeability µ(ω) of the LHM
layer are represented by the Drude model given by

Fig. 1. Schematic diagram of the (AB)3(BA)3 structure under
consideration.
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εA(ω) = 1 −

10

ω(ω + iγ)
, µA(ω) = 1 −

10

ω(ω + iγ)
,

(1a)

εB = 2.5, µB = 1, (1b)

where ω is the frequency of the incident radiation, and
γ is the damping coefficient. The LHM are always lossy.
The effect of losses is that they damp the magnitude of
the transmitting modes[23,24]. The focus of the present
study is to compare different characteristics of the de-
fect modes located inside the zero-n gap and the Bragg
gap. Here, losses are assumed to be absent similar to
previous studie[10]; however, these can be included and
can result in relatively decreased magnitude of the trans-
mitting modes. The transfer matrix approach was used
to study wave propagation through the structure. The
transfer matrix for the jth layer can be written as

mj =





cos kjdj −
1

qj

sin kjdj

qj sin kjdj cos kjdj



 , (2)

where

qj =

√
εj

√
µj

√

1 −
sin2 θ

µjεj

. (3)

In Eq. (3), kj and dj represent the local wave vector and
width corresponding to the jth layer, respectively, and θ
represents the angle of incidence. The tangential compo-
nents of the electric and magnetic fields at the incident
side x = 0 and at the transmitted side x = L are related
by:

[

E1

H1

]

x=0

= M

[

EN

HN

]

x=L

, (4)

M =

N+1
∏

j=1

mj, (5)

where, N represents the total number of layers in the
structure. The transmission coefficient T of the finite
structure is calculated by applying the boundary condi-
tions at the incident and the transmitted ends, and is
given by the following expression:

T =
2q0

[(q0M11 + q0M22) − (q2
0M12 + M21)]

, (6)

where q0 =
√

1 −
sin2 θ
ε0µ0

= cos θ, because there is air on

Fig. 2. (a) Transmission versus frequency graph of the
(AB)6 structure shows the zero-n gap in the frequency re-
gion 1.8 < ω < 2.1 and the Bragg gap in the frequency region
5.1 < ω < 6. (b) The transmission versus frequency graph of
the (AB)3(BA)3 structure, defect modes appear in the zero-n
gap and the Bragg gap.

Fig. 3. Transmission versus frequency graph. (a) Solid,
dashed and the dotted graph correspond to (AB)3(BA)3 ,
(AB)4(BA)4 , and (AB)5(BA)5. (b) The solid and the dotted
lines correspond to the (AB)3(BA)3 and (AB)2(BA)4 struc-
ture.

the incident and the transmitted sides of the structure,
and Mlm represents the elements of the matrix M.

Dimensionless units have been used in the calculations,

i.e., ω = ω′d
c

is the dimensionless frequency (ω′ being fre-
quency in real units, and c is the velocity of light) and
DA = dA

d
, DB = dB

d
are the dimensionless widths of the

layers (where d = dA + dB).
Initially, we considered wave propagation in a periodic

structure ABAB without any irregularity. The transmis-
sivity versus frequency plot of this structure is shown in
Fig. 2(a), which features a structure comprising 6 AB pe-

riods. For the ω <
√

10, layer A has a negative refractive
index and behaves as a LHM. A zero-n gap appears in the
frequency region 1.8 < ω < 2.1. In this frequency region,
the average refractive index of the structure defined by
nav = nADA + nBDB, becomes zero. A Bragg gap ap-
pears in the frequency region 5.1 < ω < 6, where both
the layers have positive refractive indexes. Figure 2(b)
shows the transmissivity versus frequency plot of a struc-
ture, in which the order of the layers in the last three
periods has been reversed, i.e., this PC can be written
as (AB)3(BA)3. This structure can also be regarded as a
combination of two conjugated PCs. The periodicity of
the structure is broken in this way, after which the de-
fect modes appear both in the zero-n gap and the Bragg
gap (Fig. 2(b)). The main advantage of the structure
lies in the fact that there is no need to introduce some
extra layer or change structure parameters; instead, the
periodicity of the structure is broken by simply revers-
ing the order of growth of the layers. As the properties
of such a defect mode in Bragg gap have already been
investigated[22], we only focused on the properties of the
defect mode that are located inside the zero-n gap. Fig-
ure 3(a) shows how the width of the mode changes by
increasing the number of periods in the structure. The
mode can be made very narrow by increasing the num-
ber of periods in the structure. It is noteworthy that
a defect mode is created inside the gaps just by revers-
ing the order of the layers; moreover, the confinement
effect grows very effectively and the width of the mode
decreases very rapidly by adding few more periods. In
this way, the quality factor of the mode is enhanced many
times. The quality factor is very important if the mode is
to be utilized for making filters; in addition, the mode is
sensitive to the symmetry of the structure. In Fig. 3(b),
the solid line corresponds to the (AB)3(BA)3 structure,
which gives rise to a mode of transmission coefficient 1,
whereas the dotted line corresponds to the (AB)2(AB)4

structure, which gives rise to a defect mode of transmis-
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sion coefficient nearly equal to 0.4. The mode disappears
as the structure is made more asymmetrical. Figure 4
shows the dependence of the defect modes on the angle
of the incident radiation. The defect mode in the zero-n
gap is almost insensitive to the angular change of the in-
cident radiation, whereas the defect mode in the Bragg
gap shifts on the frequency scale considerably as the an-
gle of the incident radiation is changed. Both properties
can be utilized in certain applications. The insensitivity
of the zero-n defect mode can be utilized in making om-
nidirectional applications. The modes located inside the
Bragg gap can be used in making angle tunable filters.

Figure 5(a), which shows modes inside the zero-n
gap only, demonstrates the transmission spectrum of
the (AB)3(BA)3(AB)3 structure. This structure pro-
vides two interfaces where the waves become local-
ized; hence, two defect modes appear inside the gaps.
Next, Fig. 5(b) shows the transmission spectrum of
the (AB)3(BA)3(AB)3(BA)3 structure, in which three
defect modes appear inside the zero-n gap. Repeat-
ing the pattern, the number of defect modes inside the
keeps increasing, as shown in Figs. 5(c) and (d), where
four and five modes appear in the transmission spectra
corresponding to the (AB)3(BA)3(AB)3(BA)3(AB)3 and
(AB)3(BA)3(AB)3(BA)3(AB)3(BA)3 structures, respec-
tively.

Fig. 4. Angular dependence of the defect mode in the zero-
n gap and in the Bragg gap. The solid, dotted, and dashed
curves correspond to the angles of incidence of 0◦

, 30◦

, and
45◦, respectively.

Fig. 5. Appearance of multiple modes in the zero-n
gap. (a) (AB)3(BA)3(AB)3, (b) (AB)3(BA)3(AB)3(BA)3, (c)
(AB)3(BA)3(AB)3(BA)3(AB)3, and (d) (AB)3(BA)3(AB)3

(BA)3(AB)3(AB)3.

Fig. 6. (a) Multiple modes in the zero-n gap are relatively
insensitive to the incidence angle, whereas in (b) the modes
located inside the Bragg gap depend strongly on the incidence
angle. The solid, dotted, and dashed curves correspond to the
angles of incidence of 0◦

, 30◦

, and 45◦, respectively in both (a)
and (b) parts.

The properties of these multiple modes can be inves-
tigated in the same way as that done for a single mode.
Here, we investigated only the angle dependence of these
multiple modes. Figure 6(a) shows the angular depen-
dence of the multiple modes located inside the zero-n
gap, whereas Fig. 6(b) shows the angular dependence
of the modes inside the Bragg gap. The modes inside
the zero-n gap are shown to be nearly insensitive to the
angular dependence, whereas those inside the Bragg gap
shift drastically on the frequency axis as the angle of the
incident radiation is changed.

In conclusion, the appearance and properties of single
and multiple modes are investigated in a simple structure
containing positive and negative refractive index layers.
The periodicity of the structure is broken by simply
changing the order of the A and B layers of the struc-
ture in order to introduce defect modes. These modes
can be made very compact by adding more layers in the
structure. Modes inside the zero-n gap show angular
insensitivity, whereas those inside the Bragg gap show
angular dependence. Both properties can be utilized.
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